Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Plant Cell ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598645

ABSTRACT

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of non-flowering plants retain immune-related functions through trans-lineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to non-flowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable to motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the non-flowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent non-flowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.

3.
BMC Plant Biol ; 23(1): 363, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37460981

ABSTRACT

BACKGROUND: Durum wheat (Triticum turgidum subsp. durum) is widely grown for pasta production, and more recently, is gaining additional interest due to its resilience to warm, dry climates and its use as an experimental model for wheat research. Like in bread wheat, the starch and protein accumulated in the endosperm during grain development are the primary contributors to the calorific value of durum grains. RESULTS: To enable further research into endosperm development and storage reserve synthesis, we generated a high-quality transcriptomics dataset from developing endosperms of variety Kronos, to complement the extensive mutant resources available for this variety. Endosperms were dissected from grains harvested at eight timepoints during grain development (6 to 30 days post anthesis (dpa)), then RNA sequencing was used to profile the transcriptome at each stage. The largest changes in gene expression profile were observed between the earlier timepoints, prior to 15 dpa. We detected a total of 29,925 genes that were significantly differentially expressed between at least two timepoints, and clustering analysis revealed nine distinct expression patterns. We demonstrate the potential of our dataset to provide new insights into key processes that occur during endosperm development, using starch metabolism as an example. CONCLUSION: We provide a valuable resource for studying endosperm development in this increasingly important crop species.


Subject(s)
Endosperm , Triticum , Endosperm/genetics , Endosperm/metabolism , Triticum/metabolism , Transcriptome , Edible Grain , Starch/metabolism
4.
Front Plant Sci ; 14: 1123211, 2023.
Article in English | MEDLINE | ID: mdl-36993852

ABSTRACT

Introduction: Although DNA methylation patterns are generally considered to be faithfully inherited in Arabidopsis thaliana (Arabidopsis), there is evidence of reprogramming during both male and female gametogenesis. The gynoecium is the floral reproductive organ from which the ovules develop and generate meiotically derived cells that give rise to the female gametophyte. It is not known whether the gynoecium can condition genomic methylation in the ovule or the developing female gametophyte. Methods: We performed whole genome bisulfite sequencing to characterize the methylation patterns that prevail in the genomic DNA of pre-meiotic gynoecia of wild-type and three mutants defective in genes of the RNA-directed DNA methylation pathway (RdDM): ARGONAUTE4 (AGO4), ARGONAUTE9 (AGO9), and RNA-DEPENDENT RNA POLYMERASE6 (RDR6). Results: By globally analyzing transposable elements (TEs) and genes located across the Arabidopsis genome, we show that DNA methylation levels are similar to those of gametophytic cells rather than those of sporophytic organs such as seedlings and rosette leaves. We show that none of the mutations completely abolishes RdDM, suggesting strong redundancy within the methylation pathways. Among all, ago4 mutation has the strongest effect on RdDM, causing more CHH hypomethylation than ago9 and rdr6. We identify 22 genes whose DNA methylation is significantly reduced in ago4, ago9 and rdr6 mutants, revealing potential targets regulated by the RdDM pathway in premeiotic gyneocia. Discussion: Our results indicate that drastic changes in methylation levels in all three contexts occur in female reproductive organs at the sporophytic level, prior to the alternation of generations within the ovule primordium, offering a possibility to start identifying the function of specific genes acting in the establishment of the female gametophytic phase of the Arabidopsis life cycle.

5.
Nat Commun ; 14(1): 876, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797319

ABSTRACT

Grass pea (Lathyrus sativus L.) is a rich source of protein cultivated as an insurance crop in Ethiopia, Eritrea, India, Bangladesh, and Nepal. Its resilience to both drought and flooding makes it a promising crop for ensuring food security in a changing climate. The lack of genetic resources and the crop's association with the disease neurolathyrism have limited the cultivation of grass pea. Here, we present an annotated, long read-based assembly of the 6.5 Gbp L. sativus genome. Using this genome sequence, we have elucidated the biosynthetic pathway leading to the formation of the neurotoxin, ß-L-oxalyl-2,3-diaminopropionic acid (ß-L-ODAP). The final reaction of the pathway depends on an interaction between L. sativus acyl-activating enzyme 3 (LsAAE3) and a BAHD-acyltransferase (LsBOS) that form a metabolon activated by CoA to produce ß-L-ODAP. This provides valuable insight into the best approaches for developing varieties which produce substantially less toxin.


Subject(s)
Amino Acids, Diamino , Lathyrus , Lathyrus/genetics , Lathyrus/metabolism , Amino Acids, Diamino/metabolism , Neurotoxins/metabolism , Genomics
6.
Nature ; 611(7936): 614-622, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36323776

ABSTRACT

Sperm chromatin is typically transformed by protamines into a compact and transcriptionally inactive state1,2. Sperm cells of flowering plants lack protamines, yet they have small, transcriptionally active nuclei with chromatin condensed through an unknown mechanism3,4. Here we show that a histone variant, H2B.8, mediates sperm chromatin and nuclear condensation in Arabidopsis thaliana. Loss of H2B.8 causes enlarged sperm nuclei with dispersed chromatin, whereas ectopic expression in somatic cells produces smaller nuclei with aggregated chromatin. This result demonstrates that H2B.8 is sufficient for chromatin condensation. H2B.8 aggregates transcriptionally inactive AT-rich chromatin into phase-separated condensates, which facilitates nuclear compaction without reducing transcription. Reciprocal crosses show that mutation of h2b.8 reduces male transmission, which suggests that H2B.8-mediated sperm compaction is important for fertility. Altogether, our results reveal a new mechanism of nuclear compaction through global aggregation of unexpressed chromatin. We propose that H2B.8 is an evolutionary innovation of flowering plants that achieves nuclear condensation compatible with active transcription.


Subject(s)
Arabidopsis , Cell Size , Chromatin , Histones , Pollen , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Histones/classification , Histones/genetics , Histones/metabolism , Protamines , Pollen/cytology , Pollen/genetics , Pollen/metabolism , Gene Expression Regulation, Plant , AT Rich Sequence , Cell Nucleus/genetics , Mutation , Cell Nucleus Size , Phase Transition , Transcription, Genetic
7.
NAR Genom Bioinform ; 4(3): lqac062, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36071721

ABSTRACT

Alignment-free methods are alternatives to alignment-based methods when searching sequence data sets. The output from an alignment-free sequence comparison is a similarity score, the interpretation of which is not straightforward. We propose objective functions to interpret and calibrate outputs from alignment-free searches, noting that different objective functions are necessary for different biological contexts. This leads to advantages: visualising and comparing score distributions, including those from true positives, may be a relatively simple method to gain insight into the performance of different metrics. Using an empirical approach with both DNA and protein sequences, we characterise different similarity score distributions generated under different parameters. In particular, we demonstrate how sequence length can affect the scores. We show that scores of true positive sequence pairs may correlate significantly with their mean length; and even if the correlation is weak, the relative difference in length of the sequence pair may significantly reduce the effectiveness of alignment-free metrics. Importantly, we show how objective functions can be used with test data to accurately estimate the probability of true positives. This can significantly increase the utility of alignment-free approaches. Finally, we have developed a general-purpose software tool called KAST for use in high-throughput workflows on Linux clusters.

8.
Science ; 373(6550)2021 07 02.
Article in English | MEDLINE | ID: mdl-34210850

ABSTRACT

The plant male germline undergoes DNA methylation reprogramming, which methylates genes de novo and thereby alters gene expression and regulates meiosis. Here, we reveal the molecular mechanism underlying this reprogramming. We demonstrate that genic methylation in the male germline, from meiocytes to sperm, is established by 24-nucleotide small interfering RNAs (siRNAs) transcribed from transposons with imperfect sequence homology. These siRNAs are synthesized by meiocyte nurse cells (tapetum) through activity of CLSY3, a chromatin remodeler absent in other anther cells. Tapetal siRNAs govern germline methylation throughout the genome, including the inherited methylation patterns in sperm. Tapetum-derived siRNAs also silence germline transposons, safeguarding genome integrity. Our results reveal that tapetal siRNAs are sufficient to reconstitute germline methylation patterns and drive functional methylation reprogramming throughout the male germline.


Subject(s)
Arabidopsis/cytology , Arabidopsis/genetics , Epigenesis, Genetic , Paternal Inheritance , Pollen/genetics , RNA, Small Interfering/genetics , DNA Methylation , Meiosis/genetics , Mitosis/genetics
9.
Int J Mol Sci ; 21(18)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933168

ABSTRACT

Brachypodium distachyon (Brachypodium) is a non-domesticated model grass species that can be used to test if variation in genetic sequence or methylation are linked to environmental differences. To assess this, we collected seeds from 12 sites within five climatically distinct regions of Turkey. Seeds from each region were grown under standardized growth conditions in the UK to preserve methylated sequence variation. At six weeks following germination, leaves were sampled and assessed for genomic and DNA methylation variation. In a follow-up experiment, phenomic approaches were used to describe plant growth and drought responses. Genome sequencing and population structure analysis suggested three ancestral clusters across the Mediterranean, two of which were geographically separated in Turkey into coastal and central subpopulations. Phenotypic analyses showed that the coastal subpopulation tended to exhibit relatively delayed flowering and the central, increased drought tolerance as indicated by reduced yellowing. Genome-wide methylation analyses in GpC, CHG and CHH contexts also showed variation which aligned with the separation into coastal and central subpopulations. The climate niche modelling of both subpopulations showed a significant influence from the "Precipitation in the Driest Quarter" on the central subpopulation and "Temperature of the Coldest Month" on the coastal subpopulation. Our work demonstrates genetic diversity and variation in DNA methylation in Turkish accessions of Brachypodium that may be associated with climate variables and the molecular basis of which will feature in ongoing analyses.


Subject(s)
Brachypodium/genetics , DNA Methylation/genetics , Genetic Variation/genetics , Climate , Droughts , Genome, Plant/genetics , Plant Leaves/genetics , Seeds/genetics , Stress, Physiological/genetics , Turkey
10.
Elife ; 82019 05 28.
Article in English | MEDLINE | ID: mdl-31135340

ABSTRACT

Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell - vegetative cell (VC) - of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , DNA Demethylation , DNA Transposable Elements , Heterochromatin/metabolism , Histones/metabolism , Plant Cells/metabolism , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , N-Glycosyl Hydrolases/metabolism , Trans-Activators/metabolism
11.
Mol Pharm ; 16(7): 3221-3236, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31075201

ABSTRACT

Five anhydrate polymorphs (forms I-V) and the isomorphic dehydrate (Hydehy) of dapsone (4,4'-diaminodiphenyl sulfone or DDS) were prepared and characterized in an interdisciplinary experimental and computational study, elucidating the kinetic and thermodynamic stabilities, solid form interrelationships, and structural features of the known forms I-IV, the novel polymorph form V, and Hydehy. Calorimetric measurements, solubility experiments, and lattice energy calculations revealed that form V is the thermodynamically stable polymorph from absolute zero to at least 90 °C. At higher temperatures, form II, and then form I, becomes the most stable DDS solid form. The computed 0 K stability order (lattice energy calculations) was confirmed with calorimetric measurements as follows, V (most stable) > III > Hydehy > II > I > IV (least stable). The discovery of form V was complicated by the fact that the metastable but kinetically stabilized form III shows a higher nucleation and growth rate. By combining laboratory powder X-ray diffraction data and ab initio calculations, the crystal structure of form V ( P21/ c, Z' = 4) was solved, with a high energy DDS conformation allowing a denser packing and more stable intermolecular interactions, rationalizing the formation of a high Z' structure. The structures of the forms I and IV, only observed from the melt and showing distinct packing features compared to the forms II, III, and V, were derived from the computed crystal energy landscapes. Dehydration modeling of the DDS hydrate led to the Hydehy structure. This study expands our understanding about the complex crystallization behavior of pharmaceuticals and highlights the big challenge in solid form screening, especially that there is no clear end point.


Subject(s)
Chemistry, Pharmaceutical/methods , Computational Chemistry/methods , Crystallization/methods , Dapsone/analogs & derivatives , Dapsone/chemistry , Entropy , Transition Temperature , Absorption, Physicochemical , Calorimetry, Differential Scanning , Drug Stability , Hydrogen Bonding , Kinetics , Molecular Conformation , Solubility , Water/chemistry , X-Ray Diffraction
12.
Int J Mol Sci ; 20(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974727

ABSTRACT

Brachypodium distachyon is an established model for drought tolerance. We previously identified accessions exhibiting high tolerance, susceptibility and intermediate tolerance to drought; respectively, ABR8, KOZ1 and ABR4. Transcriptomics and metabolomic approaches were used to define tolerance mechanisms. Transcriptional analyses suggested relatively few drought responsive genes in ABR8 compared to KOZ1. Linking these to gene ontology (GO) terms indicated enrichment for "regulated stress response", "plant cell wall" and "oxidative stress" associated genes. Further, tolerance correlated with pre-existing differences in cell wall-associated gene expression including glycoside hydrolases, pectin methylesterases, expansins and a pectin acetylesterase. Metabolomic assessments of the same samples also indicated few significant changes in ABR8 with drought. Instead, pre-existing differences in the cell wall-associated metabolites correlated with drought tolerance. Although other features, e.g., jasmonate signaling were suggested in our study, cell wall-focused events appeared to be predominant. Our data suggests two different modes through which the cell wall could confer drought tolerance: (i) An active response mode linked to stress induced changes in cell wall features, and (ii) an intrinsic mode where innate differences in cell wall composition and architecture are important. Both modes seem to contribute to ABR8 drought tolerance. Identification of the exact mechanisms through which the cell wall confers drought tolerance will be important in order to inform development of drought tolerant crops.


Subject(s)
Brachypodium/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Oxidative Stress , Plant Proteins/biosynthesis , Stress, Physiological , Brachypodium/genetics , Cell Wall/genetics , Dehydration/genetics , Dehydration/metabolism , Plant Proteins/genetics
13.
Parasit Vectors ; 11(1): 617, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30509301

ABSTRACT

BACKGROUND: Diseases caused by parasitic flatworms of rumen tissues (paramphistomosis) are a significant threat to global food security as a cause of morbidity and mortality in ruminant livestock in subtropical and tropical climates. Calicophoron daubneyi is currently the only paramphistome species commonly infecting ruminant livestock in temperate European climates. However, recorded incidences of C. daubneyi infection in European livestock have been increasing over the last decade. Whilst clinical paramphistomosis caused by adult worms has not been confirmed in Europe, fatalities have been attributed to severe haemorrhagic enteritis of the small intestine resulting from the migration of immature paramphistomes. Large numbers of mature adults can reside in the rumen, yet to date, the impact on rumen fermentation, and consequently on productivity and economic management of infected livestock, have not been resolved. Limited publicly available nucleotide and protein sequences for C. daubneyi underpin this lack of biological and economic understanding. Here we present for the first time a de novo assembled transcriptome, with functional annotations, for adult C. daubneyi, which provides a reference database for protein and nucleotide sequence identification to facilitate fundamental biology, anthelmintic, vaccine and diagnostics discoveries. RESULTS: This dataset identifies a number of genes potentially unique to C. daubneyi and, by comparison to an existing transcriptome for the related Paramphistomum cervi, identifies novel genes which may be unique to the paramphistome group of platyhelminthes. Additionally, we present the first coverage of the excretory/secretory and soluble somatic proteome profiles for adult C. daubneyi and identify the release of extracellular vesicles from adult C. daubneyi parasites during in vitro, ex-host culture. Finally, we have performed the first analysis of rumen fluke impacting upon rumen fermentation parameters using an in vitro gas production study resulting in a significant increase in propionate production. CONCLUSIONS: The resulting data provide a discovery platform (transcriptome, proteomes, EV isolation pipeline and in vitro fermentation system) to further study C. daubneyi-host interaction. In addition, the acetate: propionate ratio has been demonstrated to decrease with rumen fluke infection suggesting that acidotic conditions in the rumen may occur.


Subject(s)
Cattle Diseases/parasitology , Livestock/parasitology , Paramphistomatidae/genetics , Paramphistomatidae/metabolism , Rumen/parasitology , Trematode Infections/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/metabolism , Europe/epidemiology , Extracellular Vesicles , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Genes, Helminth , Helminth Proteins , Incidence , Metabolic Networks and Pathways/genetics , Proteomics , Rumen/metabolism , Transcriptome , Trematode Infections/epidemiology , Trematode Infections/parasitology
15.
Int J Parasitol Drugs Drug Resist ; 8(2): 213-222, 2018 08.
Article in English | MEDLINE | ID: mdl-29649665

ABSTRACT

Uncontrolled host immunological reactions directed against tissue-trapped eggs precipitate a potentially lethal, pathological cascade responsible for schistosomiasis. Blocking schistosome egg production, therefore, presents a strategy for simultaneously reducing immunopathology as well as limiting disease transmission in endemic or emerging areas. We recently demonstrated that the ribonucleoside analogue 5-azacytidine (5-AzaC) inhibited Schistosoma mansoni oviposition, egg maturation and ovarian development. While these anti-fecundity effects were associated with a loss of DNA methylation, other molecular processes affected by 5-AzaC were not examined at the time. By comparing the transcriptomes of 5-AzaC-treated females to controls, we provide evidence that this ribonucleoside analogue also modulates other crucial aspects of schistosome egg-laying biology. For example, S. mansoni gene products associated with amino acid-, carbohydrate-, fatty acid-, nucleotide- and tricarboxylic acid (TCA)- homeostasis are all dysregulated in 5-AzaC treated females. To validate the metabolic pathway most significantly affected by 5-AzaC, amino acid metabolism, nascent protein synthesis was subsequently quantified in adult schistosomes. Here, 5-AzaC inhibited this process by 68% ±16.7% (SEM) in male- and 81% ±4.8% (SEM) in female-schistosomes. Furthermore, the transcriptome data indicated that adult female stem cells were also affected by 5-AzaC. For instance, 40% of transcripts associated with proliferating schistosome cells were significantly down-regulated by 5-AzaC. This finding correlated with a considerable reduction (95%) in the number of 5-ethynyl-2'-deoxyuridine (EdU) positive cells found in 5-AzaC-treated females. In addition to protein coding genes, the effect that 5-AzaC had on repetitive element expression was also assessed. Here, 46 repeats were found differentially transcribed between 5-AzaC-treated and control females with long terminal repeat (LTR) and DNA transposon classes being amongst the most significant. This study demonstrates that the anti-fecundity activity of 5-AzaC affects more than just DNA methylation in schistosome parasites. Further characterisation of these processes may reveal novel targets for schistosomiasis control.


Subject(s)
Azacitidine/pharmacology , Fertility/drug effects , Gene Expression Regulation/drug effects , Schistosoma mansoni/drug effects , Stem Cells/drug effects , Animals , Citric Acid Cycle/drug effects , DNA Methylation/drug effects , Female , Gene Expression Profiling , Schistosoma mansoni/cytology , Schistosoma mansoni/genetics , Schistosoma mansoni/physiology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/prevention & control , Schistosomiasis mansoni/transmission , Sequence Analysis, RNA , Terminal Repeat Sequences/genetics , Transcriptome
16.
Nat Genet ; 50(1): 130-137, 2018 01.
Article in English | MEDLINE | ID: mdl-29255257

ABSTRACT

DNA methylation regulates eukaryotic gene expression and is extensively reprogrammed during animal development. However, whether developmental methylation reprogramming during the sporophytic life cycle of flowering plants regulates genes is presently unknown. Here we report a distinctive gene-targeted RNA-directed DNA methylation (RdDM) activity in the Arabidopsis thaliana male sexual lineage that regulates gene expression in meiocytes. Loss of sexual-lineage-specific RdDM causes mis-splicing of the MPS1 gene (also known as PRD2), thereby disrupting meiosis. Our results establish a regulatory paradigm in which de novo methylation creates a cell-lineage-specific epigenetic signature that controls gene expression and contributes to cellular function in flowering plants.


Subject(s)
Arabidopsis/genetics , DNA Methylation , Gene Expression Regulation, Plant , Meiosis/genetics , Anticodon , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , Genetic Loci , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Splicing , RNA, Plant/metabolism , RNA, Transfer/genetics
17.
Proc Natl Acad Sci U S A ; 113(52): 15138-15143, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27956642

ABSTRACT

Cytosine methylation is a DNA modification with important regulatory functions in eukaryotes. In flowering plants, sexual reproduction is accompanied by extensive DNA demethylation, which is required for proper gene expression in the endosperm, a nutritive extraembryonic seed tissue. Endosperm arises from a fusion of a sperm cell carried in the pollen and a female central cell. Endosperm DNA demethylation is observed specifically on the chromosomes inherited from the central cell in Arabidopsis thaliana, rice, and maize, and requires the DEMETER DNA demethylase in Arabidopsis DEMETER is expressed in the central cell before fertilization, suggesting that endosperm demethylation patterns are inherited from the central cell. Down-regulation of the MET1 DNA methyltransferase has also been proposed to contribute to central cell demethylation. However, with the exception of three maize genes, central cell DNA methylation has not been directly measured, leaving the origin and mechanism of endosperm demethylation uncertain. Here, we report genome-wide analysis of DNA methylation in the central cells of Arabidopsis and rice-species that diverged 150 million years ago-as well as in rice egg cells. We find that DNA demethylation in both species is initiated in central cells, which requires DEMETER in Arabidopsis However, we do not observe a global reduction of CG methylation that would be indicative of lowered MET1 activity; on the contrary, CG methylation efficiency is elevated in female gametes compared with nonsexual tissues. Our results demonstrate that locus-specific, active DNA demethylation in the central cell is the origin of maternal chromosome hypomethylation in the endosperm.


Subject(s)
Arabidopsis/genetics , DNA Methylation , Demethylation , Oryza/genetics , Arabidopsis Proteins/metabolism , DNA, Plant/genetics , Endosperm/metabolism , Epigenesis, Genetic , Flowers/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Genomic Imprinting , Homozygote , RNA, Plant/metabolism , Seeds/genetics
18.
BMC Genomics ; 17(1): 756, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27671367

ABSTRACT

BACKGROUND: Sainfoin (Onobrychis viciifolia) is a highly nutritious tannin-containing forage legume. In the diet of ruminants sainfoin can have anti-parasitic effects and reduce methane emissions under in vitro conditions. Many of these benefits have been attributed to condensed tannins or proanthocyanidins in sainfoin. A combination of increased use of industrially produced nitrogen fertilizer, issues with establishment and productivity in the first year and more reliable alternatives, such as red clover led to a decline in the use of sainfoin since the middle of the last century. In recent years there has been a resurgence of interest in sainfoin due to its potential beneficial nutraceutical and environmental attributes. However, genomic resources are scarce, thus hampering progress in genetic analysis and improvement. To address this we have used next generation RNA sequencing technology to obtain the first transcriptome of sainfoin. We used the library to identify gene-based simple sequence repeats (SSRs) and potential single nucleotide polymorphisms (SNPs). RESULTS: One genotype from each of five sainfoin accessions was sequenced. Paired-end (PE) sequences were generated from cDNA libraries of RNA extracted from 7 day old seedlings. A combined assembly of 92,772 transcripts was produced de novo using the Trinity programme. About 18,000 transcripts were annotated with at least one GO (gene ontology) term. A total of 63 transcripts were annotated as involved in the tannin biosynthesis pathway. We identified 3786 potential SSRs. SNPs were identified by mapping the reads of the individual assemblies against the combined assembly. After stringent filtering a total of 77,000 putative SNPs were identified. A phylogenetic analysis of single copy number genes showed that sainfoin was most closely related to red clover and Medicago truncatula, while Lotus japonicus, bean and soybean are more distant relatives. CONCLUSIONS: This work describes the first transcriptome assembly in sainfoin. The 92 K transcripts provide a rich source of SNP and SSR polymorphisms for future use in genetic studies of this crop. Annotation of genes involved in the condensed tannin biosynthesis pathway has provided the basis for further studies of the genetic control of this important trait in sainfoin.

19.
BMC Bioinformatics ; 17(1): 295, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27473283

ABSTRACT

BACKGROUND: DNA methylation is an important regulator of gene expression and chromatin structure. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is commonly used to identify regions of DNA methylation in eukaryotic genomes. Within MeDIP-Seq libraries, methylated cytosines can be found in both double-stranded (symmetric) and single-stranded (asymmetric) genomic contexts. While symmetric CG methylation has been relatively well-studied, asymmetric methylation in any dinucleotide context has received less attention. Importantly, no currently available software for processing MeDIP-Seq reads is able to resolve these strand-specific DNA methylation signals. Here we introduce DISMISS, a new software package that detects strand-associated DNA methylation from existing MeDIP-Seq analyses. RESULTS: Using MeDIP-Seq datasets derived from Apis mellifera (honeybee), an invertebrate species that contains more asymmetric- than symmetric- DNA methylation, we demonstrate that DISMISS can identify strand-specific DNA methylation signals with similar accuracy as bisulfite sequencing (BS-Seq; single nucleotide resolution methodology). Specifically, DISMISS is able to confidently predict where DNA methylation predominates (plus or minus DNA strands - asymmetric DNA methylation; plus and minus DNA stands - symmetric DNA methylation) in MeDIP-Seq datasets derived from A. mellifera samples. When compared to DNA methylation data derived from BS-Seq analysis of A. mellifera worker larva, DISMISS-mediated identification of strand-specific methylated cytosines is 80 % accurate. Furthermore, DISMISS can correctly (p <0.0001) detect the origin (sense vs antisense DNA strands) of DNA methylation at splice site junctions in A. mellifera MeDIP-Seq datasets with a precision close to BS-Seq analysis. Finally, DISMISS-mediated identification of DNA methylation signals associated with upstream, exonic, intronic and downstream genomic loci from A. mellifera MeDIP-Seq datasets outperforms MACS2 (Model-based Analysis of ChIP-Seq2; a commonly used MeDIP-Seq analysis software) and closely approaches the results achieved by BS-Seq. CONCLUSIONS: While asymmetric DNA methylation is increasingly being found in growing numbers of eukaryotic species and is the predominant pattern observed in some invertebrate genomes, it has been difficult to detect in MeDIP-Seq datasets using existing software. DISMISS now enables more sensitive examinations of MeDIP-Seq datasets and will be especially useful for the study of genomes containing either low levels of DNA methylation or for genomes containing relatively high amounts of asymmetric methylation.


Subject(s)
Bees/genetics , DNA Methylation , Genomics/methods , Animals , Base Sequence , Bees/metabolism , Databases, Nucleic Acid , Immunoprecipitation , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA , Software
20.
Bioinformatics ; 32(21): 3339-3341, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27378293

ABSTRACT

MOTIVATION: Two-component systems (TCS) are the main signalling pathways of prokaryotes, and control a wide range of biological phenomena. Their functioning depends on interactions between TCS proteins, the specificity of which is poorly understood. RESULTS: The MetaPred2CS web-server interfaces a sequence-based meta-predictor specifically designed to predict pairing of the histidine kinase and response-regulator proteins forming TCSs. MetaPred2CS integrates six sequence-based methods using a support vector machine classifier and has been intensively tested under different benchmarking conditions: (i) species specific gene sets; (ii) neighbouring versus orphan pairs; and (iii) k-fold cross validation on experimentally validated datasets. AVAILABILITY AND IMPLEMENTATION: Web server at: http://metapred2cs.ibers.aber.ac.uk/, Source code: https://github.com/martinjvickers/MetaPred2CS or implemented as Virtual Machine at: http://metapred2cs.ibers.aber.ac.uk/download CONTACT: naf4@aber.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Prokaryotic Cells , Proteins , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...